
Annals of Botany 78 : 569–576, 1996

Regression Smoothers for Estimating Parameters of Growth Analyses
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The objective of regression smoothers is to obtain predicted values of a dependent variable and its first derivative from
empirical data without having to assume any particular functional relationship between the dependent and
independent variables. An early variant of this type of analysis, specifically natural B-splines, was first applied to
growth analyses by Parsons and Hunt in 1981 (Annals of Botany 48 : 341–352, 1981). The object of this paper is to
describe and evaluate two recent advances in this area (cubic spline smoothers and loess smoothers) in the context
of plant growth analysis and compare them to natural B-splines. The accuracies of these methods are evaluated using
simulated data of a type that normally causes difficulties with other methods. A bootstrap procedure is described that
improves the estimate of the optimal smoother parameter. It is shown that these smoothers can capture even subtle
changes in relative growth rate. The method is then applied to growth data of Holcus lanatus.
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INTRODUCTION

Researchers interested in plant growth often have to estimate
growth quantities from experimental data. At their simplest,
such estimates may be of plant dry weight over time; but,
more often, estimates of rates of change or relative rates of
change are involved (Hunt, 1982). The parameters of
growth analysis, such as relative growth rate, net as-
similation rate or nitrogen productivity are now particularly
important in plant ecology because they are state variables
in influential models of plant ecophysiology and of
vegetation structure and dynamics (for example Grime,
1979; Tilman, 1988).

The underlying assumption when obtaining such estimates
is that there is an unknown systematic trend in the data
which is disturbed by random errors. Unfortunately, there
is no parametric growth function that can describe this
underlying trend which is also generally applicable to
different species and to different environmental conditions.
Because of this, researchers generally rely on statistical
curve-fitting techniques. Hunt (1982) described and com-
pared a number of such methods used in plant growth
analysis. Hunt and Parsons (1974) advocated step-wise
polynomial regression of the (natural) log-transformed dry
weights on time followed by differentiation to obtain rates
of change. Unfortunately, this still forces the data into a
particular parametric function which may result in over- or
under-fitting (Parsons and Hunt, 1981). Poorter (1989)
suggested calculating average relative growth rates over
sequential time periods followed by step-wise polynomial
regression but this does not avoid the problem of forcing
nonlinear data into a particular parametric form. Parsons
and Hunt (1981) made a major improvement when they

introduced the method of cubic B-spline regression. The
objective of this method was to approximate the data by a
series of cubic polynomial regressions that are fitted to
contiguous subsets of the data, with the added constraint
that the first and second derivatives of successive poly-
nomials agree at the ‘knots ’ (the points where the successive
polynomials touch). Although a parametric function is still
used (a cubic polynomial), varying the number and
placement of knots allows an almost infinite range of
functions to be approximated.

The objective of the present paper is threefold. First, we
wish to introduce two recent advances in form-free
regression to plant biologists interested in plant growth.
Second, we introduce a bootstrap procedure that improves
the ability of these methods to capture accurately the
underlying systematic trend in the growth trajectory. Finally,
we evaluate the ability of these two methods as well as cubic
B-splines to detect subtle changes in growth rate through
the use of numerical simulations and an actual data set
involving Holcus lanatus.

CUBIC SPLINE SMOOTHERS

There have been major improvements in the use of splines
for form-free curve fitting since the publication of Parsons
and Hunt (1981). These improvements remove much of the
subjectivity in the choice of the number and positioning of
knots and this method is now available in at least one
commercially available statistical package (Statistical Sci-
ences, 1994).

The theoretical and algorithmic details of cubic spline
smoothing can be found in Wahba (1990). A comparison of
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570 Shipley and Hunt—Regression Smoothers

this method with the B-splines regression method used by
Parsons and Hunt (1981) can be found in chapter 2 of
Hastie and Tibshirani (1990). An intuitive understanding of
the technique is given here. First, interior knots are placed
at each unique value of the independent variable (i.e. each
unique harvest date for growth data). If cubic splines were
fit to the data at this point by minimizing the residual sum
of squares, one would obtain a very good ‘fit ’ to the data
but the predicted values would simply be the means of the
(ln) dry weights at each harvest. This would result in a very
‘wobbly’ curve that is strongly affected by the random
fluctuations in the data and that therefore obscures the
underlying systematic trend.

To avoid this, a penalty function is introduced which adds
additional constraints to the spline functions. Ordinary
cubic splines are already constrained such that the first and
second derivatives be continuous across the knot positions
and the second derivative is zero beyond the extremes of the
data. The penalty function attempts to minimize the
integrated second derivatives of the splines. If the cubic
splines were fit only by minimizing this penalty function the
second derivatives would vanish and the result would be a
straight line regression. The smoothing operation involves
chosing the spline functions by minimizing a ‘penalized’
residual sum of squares (PRSS). The PRSS [eqn (1)] consists
of two terms: the first term is the sum of squared deviations
between the observed and predicted values and therefore
measures the residual deviation between observed and
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F. 1. The left scale of the abscissa gives values of plant dry weight on a logarithmic scale, the right scale gives relative growth rates (g g d−").
Solid lines show the true underlying trends in plant weight while broken lines show the true trends in relative growth rate. (E) Normally
distributed random samples (σ¯ 0±2) around this trend. A, True values of ‘plants ’ whose relative growth rates follow a beta distribution. B,
Predictions of the cubic spline smoother when the smoother parameter is too small. C, Predictions of the cubic spline smoother when the
smoothing parameter is too large. D, Predictions of cubic spline smoother with an optimal smoothing parameter, chosen by cross-validation.

predicted values, while the second term is the penalty
function weighted by a smoothing parameter λ and therefore
measures the degree of nonlinearity of the predicted values.
The minimized PRSS for a given λ therefore represents the
best compromise between the closeness of fit and the least
nonlinearity.

PRSS¯MIN [Σ(y®f (x))#­λ!( f§(x))#] dt. (1)

Here f (x) is the cubic splines function.
The smoothing parameter determines the degree to which

the splines attempt to minimize the error sum of squares
versus minimizing the degree of nonlinearity. As λ ap-
proaches zero, the penalty function becomes unimportant
and the solution tends to an interpolating function of the
means.Asλ approaches infinity, the penalty termdominates,
forcing the second derivatives to zero everywhere and the
solution is a least-squares linear regression line.

The best predicted values would be those that accurately
describe the underlying systematic trend in the data while
ignoring the random fluctuations around this trend. If λ is
too small, then the predicted values would be sensitive to the
random fluctuations in the data, and this problem would be
accentuated for the estimated derivatives. If λ is too large,
then the systematic trend would be distorted. A common
choice for λ is the value that minimizes the cross-validation
score (Hastie and Tibshirani, 1990; Wahba, 1990), which is
a measure of the predictive residual standard error. This is
because the regression degrees of freedom increases, and the
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F. 2. Simulation results of 500 random data sets whose systematic
component is shown in Fig. 1A. Each solid circle is a predicted relative
growth rate obtained from a cubic spline smooth using cross-validation.
The solid line is the true trend in relative growth rate and the broken

line is the average trend of the data.

residual degrees of freedom decreases, as λ decreases (see
Chambers and Hastie, 1992, for a discussion of the
calculation of degrees of freedom in the context of cubic
spline smoothers and loess). If λ is too large then the sum of
squared deviations will be large. Subsequent decreases in λ
will result in large decreases in the sum of squared deviations
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F. 3. A, One (relatively rare) data set from Fig. 2 in which cross-validation results in a severely under-smoothed curve. B, The distribution of
the equivalent regression degrees of freedom, obtained from cross-validation, over 400 bootstrap data sets taken from the data shown in (A). C,

The same data as in (A), but fitted using the modal equivalent degrees of freedom (eight) from the bootstrap data sets.

for only modest decreases in the residual degrees of freedom,
thus decreasing the residual standard error. However, once
the underlying systematic trend has been accurately de-
scribed, further decreases in λ will only marginally decrease
the sum of squared deviations while still decreasing the
residual degrees of freedom, thus increasing the residual
standard error. Note that the optimal λ, as determined by
cross-validation, provides an asymptotically correct value.
In data sets likely to be encountered in studies of plant
growth, the cross-validation λ may sometimes result in
over- or under-fitting (Wahba, 1990). We have found, using
numerical simulations, that using the modal cross-validation
λ obtained from bootstrapped samples (Leger, Politis and
Romano, 1992; Dixon, 1994) overcomes this problem even
in data sets in which the λ obtained from the sample itself
is not optimal. The S-PLUS statistical program (Statistical
Sciences, 1994) implements the cubic spline smoother using
the ‘smooth.spline’ function. Estimated first and second
derivatives are obtained though the ‘predict.smooth.spline’
function.

LOESS REGRESSION

Loess, or local regression (Cleveland and Devlin 1988), is
another recent advance in form-free regression. An intuitive
description of the algorithm is as follows. For a given
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F. 4. A, The true values of plant dry weight (——) and relative growth rate (– – – –) for a plant with a complicated growth trajectory. B, The
predicted values of relative growth rate (E) for 500 simulated data sets in which the random component was generated from a normal distribution

with σ¯ 0±20. The solid line shows the true values.

ordered x
i
(normally harvest dates i in the context of growth

analysis), an estimation of the expected value of y
i
[normally

ln (plant weight) at harvest i in the context of growth
analysis] is obtained from a weighted linear or quadratic
regression. However, the regression is ‘ local ’ because the
estimation of the expected value ya

i
associated with a given

x
i
is obtained after assigning weights, based on the tricube

weight function (Cleveland, 1979), to the independent
variables and these weights differ for each harvest date. The
weights are both a decreasing function of the distance of
each independent variable (harvest date) from x

i
(the

harvest date for which the predicted plant dry weight is
sought) and a smoothing parameter which defines a
‘neighbourhood size ’ ; i.e. the proportion of all independent
variables (harvest dates) beyond which the weights become
zero. This ‘neighbourhood size ’ is called the ‘span’. Thus,
data points close to x

i
contribute more to the regression

than points farther from x
i
, and points beyond the

neighbourhood size do not contribute at all to the fit. A
separate weighted regression (with different weights as
described above) is fit for each unique x

i
giving a set of

predicted y values. This procedure is implemented in the
‘ loess ’ function of S-PLUS (Statistical Sciences, 1994). As
with cubic spline smoothers, the degree of nonlinearity will
depend on the smoothing parameter defining the neigh-
bourhood size, and can be objectively chosen as the value
that minimizes the prediction standard error. Since the first
derivatives are not printed in the ‘ loess ’ function, we give a

short function, written in the S language, which can obtain
these derivatives from the output of ‘ loess ’ (Appendix).

EVALUATION OF THESE METHODS FOR
PLANT GROWTH ANALYSIS

Earlier papers (Hunt and Parsons, 1974; Parsons and Hunt,
1981; Poorter, 1989) have demonstrated their methods
using actual data sets. Unfortunately, it is impossible to
judge the ability of these methods to accurately capture the
underlying systematic trend in the growth trajectory because,
by definition, the ‘true ’ values are unknown. Here, we apply
natural B-splines, cubic spline smoothing and loess to two
simulated data sets in which the true values are known. The
first data set simulates a trajectory of relative growth rates
similar to the pattern described in Hunt (1982, p. 192).
Young plants often exhibit a short period of hyper-
exponential growth in which the relative growth rate
increases with time, followed by a slowing of growth in
which the relative growth rate decreases (Hunt, 1982). To
simulate this process, we model a plant whose relative
growth rate (RGR) follows a beta function. Plant dry
weight is 0±0001 g and RGR is zero at time zero. RGR
increases rapidly to 0±27 g g−" d−" at day 10 and then
decreases nonlinearly to zero at time 40 [eqn (2)].

1

W

dW

dt
¯ 1¬10−'t(40®t)$, t¯ (0, 40). (2)
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F. 5. Open circles show the true values of RGR from Fig. 4A. A, the loess curve obtained with an optimal span of 0±3; B, the cubic spline
smoother curve obtained with an optimal regression degrees of freedom of 13; C, five curves obtained from the B-spline regression with from one

to four knots, respectively. The thicker line in the right hand graph is the curve with five knot positions.

Integrating this equation gives the trajectory of the
(natural) log-transformed dry weights over time [eqn (3)].

ln (W )¯ 1¬10−' 9(40®t )&

5
®40

(40®t )%

4
®9±2: . (3)

As an example, consider 80 plants, all of whose growth
trajectories follow eqn (3) but in which each plant has an
added independent random component from a normal
distribution with a mean of zero and a standard deviation of
0±2. An example is shown in Fig. 1A. If the cubic spline
smoothing parameter is set too low (λ¯ 1±92¬10−(, with 1
equivalent error degree of freedom) then the predicted
values are sensitive to the random variations (Fig. 1B), and
this effect is accentuated in the predicted relative growth
rates. If the smoothing parameter is set too high (λ¯
0±41914, with 37±5 equivalent error degrees of freedom) then
the predicted values misrepresent the true systematic trend
(Fig. 1C) and underestimates the true RGR over the first
half of the graph while overestimating it over the second
half of the graph. The smoothing parameter that minimizes
the predictive standard error (λ¯ 0±00158, with 33 equiva-
lent error degrees of freedom) accurately captures most of
the systematic trend (Fig. 1D). Figure 2 shows the
distribution of RGR values obtained from 500 random data
sets, each generated as described above. It is clear that the
cubic spline smoother accurately captured the true trend
over most of the ‘growth’ period.

Figure 3A shows one of the 500 random data sets in
which the cross-validation λ severely under-smooths the
data, as shown by the very jagged, rapidly changing RGR
values. Fig. 3B shows the distribution of the regression
degrees of freedom associated with the optimal cross-
validation λ for each of 400 bootstrapped samples of this
data set. Although cross-validation of the data shown in
Fig. 3A suggested a regression degrees of freedom of almost
20, the most common value of the bootstrapped data sets
was 8 (therefore 32 equivalent error degrees of freedom).
Figure 3C shows this same data as shown in Fig. 3A, but
with a smoothing parameter producing eight equivalent
degrees of freedom for the cubic spline smoother. The
bootstrapped value provides a much better fit.

Figure 2 clearly shows that the estimated relative growth
rates predicted by the cubic spline smoother have a bias at
the beginning of the harvest period. This is due to the fact
that the first derivative (RGR) is increasing very rapidly at
this part of the curve but the algorithm has few ‘data’ to
use. Since natural cubic splines—both smoother splines and
the regression splines used in Parsons and Hunt (1981)—
require the second derivatives to be zero beyond the first
boundary knot, this is equivalent to making RGR constant
before time zero. This bias is often found when the
derivatives are changing rapidly near the extremes of the
curve. However, it is asking too much to expect accurate
estimates of a rate of change from this method at the very
first harvest date when no information of earlier values is
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F. 6. A, Solid circles are the actual dry weights of 126 plants of Holcus lanatus L. grown in sand culture from seed and harvested over 63 d.
B, The predicted relative growth rates (thicker line) based on cubic spline smoothers, with pointwise 95% confidence intervals. C, The predicted

relative growth rates (thicker line) based on a loess smooth, along with pointwise 95% confidence intervals.

available. Although the bias persists at the second harvest
period, the true values are within the confidence limits. The
bias has largely disappeared by the third harvest. Because
the loess algorithm does not have this requirement, this bias
does not appear (Fig. 5A).

To explore further the ability of smoother splines to
estimate relative growth rate, we then conducted a second
simulation in which the RGR follows a beta function over
most of its trajectory, but in which small rapid changes are
introduced. From time 0 until 8, RGR follows the beta
function given in eqn (1). From time 8 until 12 RGR follows
a quadratic function [RGR¯ 5±67¬10−$(10®t)#­0±2] after
which it returns to the beta function until time 37. From
time 37 until time 40, RGR follows a cubic equation [RGR
¯ 0±001 (t®37)$]. We integrated this very complicated
trajectory numerically over 0±1 time units. Figure 4A shows
the true values of RGR and (ln) dry weight. Note that the
two brief periods in which RGR deviates from the beta
function are scarcely visible when looking at the plant
weights ; when random variation is added to these values,
the deviation is all but indistinguishable from random
fluctuations. Figure 4B shows the distribution of predicted
values of RGR, as estimated by smoother splines, based on
500 randomly generated data sets of 41 ‘plants ’ each, whose
error standard deviation is 0±2; the smoother splines were
able to detect these subtle changes. To directly compare
loess, cubic spline smoothers and B-spline regression, we

generated a single random sample of 41 ‘plants ’ as described
above and analysed this data set using all three methods.
Figure 5 summarizes the results. Both the cubic spline
smoother (Fig. 5B, with an optimal regression degrees of
freedom of 13) and the B-spline regressions (Fig. 5C, with
curves having from one to five knots) show a bias at the
beginning of the ‘harvest ’ period, but this disappears by the
second (cubic spline smoother) or third (B-spline regression)
‘harvest ’ period. The loess curve (Fig. 5A, with an optimal
span of 0±3) does not show this bias. On the other hand,
both loess and the cubic spline smoother underestimate the
final rapid increase in RGR at the last three harvest periods,
unlike the B-spline regression with five knots. The main
disadvantage of the B-spline regression is that there is no
way to choose the number of knots objectively, although
Parsons and Hunt (1981) described a ‘migration’ procedure
which could be used to optimize knot positions once knot
number had been chosen. All of the B-spline curves with less
than five knots completely miss the rapid quadratic decrease
in RGR between ‘harvest ’ times 5 and 15. Overall, all three
methods captured the main trends in this complicated
growth trajectory, but the loess curve seems to have
produced the best overall result.

The S-PLUS statistical package, unlike the B-spline
programof Parsons andHunt (1981), does not automatically
estimate confidence intervals for the first derivatives of
either the smoother splines or loess. However, a method of
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Shipley and Hunt—Regression Smoothers 575

calculating the standard errors, and therefore confidence
intervals, can be found in Hastie and Tibshirani (1990). Our
Appendix lists a short function in the S language that
implements this method.

ANALYSIS OF AN EMPIRICAL DATA SET

Finally, we re-analyse the data set presented in Hunt (1982)
and Hunt and Lloyd (1987) consisting of daily replicate
harvests over 63 d of Holcus lanatus grown in a growth
chamber in sand culture using a modified Long Ashton
solution. Hunt (1982) analysed these data using the original
method of Parsons and Hunt (1981) based on three migrated
knots ; the resulting curve can be found in Fig. 8.6 of Hunt
(1982) and in Fig. 4 of Hunt and Lloyd (1987). Figure 6
shows the estimated RGR using the smoother splines and
loess. Both the smoother splines and loess clearly indicate a
brief period of rapidly decreasing, and then increasing,
RGR during days 8–15 that was missing in the original B-
spline regression analysis. This pattern is similar to the
second artificial pattern described above. Of course, with
empirical data it is impossible to know with certainty
whether this brief period of rapid change is ‘real ’ but Fig.
5 clearly indicates that these methods are capable of
detecting such changes. This figure also shows that the
pointwise confidence intervals around the cubic spline
smoother curve are much narrower than those around the
loess curve.

CONCLUSION

The methods of cubic spline smoothers and loess represent
versatile and accurate ways of form-free curve fitting that
have the added advantage of being able to estimate smoothly
changing first derivatives with less subjectivity than B-
splines. Overall, all three methods capture the main trends
in a complicated growth trajectory, but the loess curve seems
to have produced the best overall result in our experience,
although with larger confidence intervals. The application
of these methods to growth analysis will result in more
accurate descriptions of growth phenomena.
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APPENDIX

The following function, written in the S language, can be
used with S-PLUS to calculate confidence intervals of the
RGR values from a cubic smoother spline. Lines in italics
and enclosed within exclamation marks are the equivalent
lines for the loess curve; the code for the ‘ loess.deriv ’ are
given later.

G\matrixVfunction(time, DF)²
! l.fitVloess(yCx,span¯op\value)

derivVloess\deriv(l.fit)!

xVunique(time)

nVlength(x)

GVmatrix(O, n, n)

SVG

IVdiag(n)

for (i in 1:n)²
fitVsmooth\spline (x, I[ ,i], df¯DF)

! fit2Vloess(I[ ,i]Cx, span¯op\value)!

S[ ,i]Vfit$y

G[,i]Vpredict\smooth\spline(fit,x,deriv¯1)$y

! G[ ,i]Vloess\deriv(fit2)[ ,3]!

list(G¯G, S¯S)

´

The following is an example analysis in which y is ln (dry
weight) and x is harvest day and the optimal λ is chosen by
cross-validation.

y\fitVsmooth\spline(x,y,cv¯T)

(y\fit$y gives the predicted values of y at each unique
harvest day. y\fit$df gives the equivalent degrees of
freedom of the model and (unique(x)-y\fit$df) gives the
residual degrees of freedom)

deriv\fitVpredict\smooth\spline(y\fit,

y\fit$x,1)
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576 Shipley and Hunt—Regression Smoothers

(deriv\fit$y gives the predicted first derivatives, i.e. RGR, at
each unique harvest day)

SE\yVsqrt(diag(G\matrix(x,

y\fit$df)$S%*%t(G\matrix(x,

y\fit$df)$S))*y\fit$cv\crit)

(This gives the standard error of the predicted values of y at
each unique harvest day)

SE\rgrVsqrt(diag(G\matrix(x,

y\fit$df)$G%*%t(G\matrix(x,

y\fit$df)$G)*y\fit$cv\crit)

(This gives the standard error of the predicted RGR at each
unique harvest day)
Multiplying the standard errors by the appropriate value of
a t distribution provides the pointwise confidence intervals.

loess\derivVfunction(fit)

²
alnVfit$surface$interpolator$all\numeric

dValn$parameter[’’d’]

coefVmatrix(aln$vval,ncol¯d­1, byrow¯T)%*%

diag(c(1,1/fit$surface$divisor))

xVmatrix(0,ncol¯d,nrow¯nrow(coef))

vcVnvV2 # d

for(iin1:d)

x[1:vc,i]Vrep(rep(aln$vert[c(i,i­d)],

rep(2 # (i®1),2)),2 # (d®i))

cellVmatrix(1:vc,nrow¯1)

iVncV1

while(i!¯nc) ²
sValn$a[i]

if(s"0) ²
cellVrbind(cell,cell[i,],cell[i,

])

zVx[cell[i,],s]

u1V(1:vc)[z¯¯z[1]]

u2V(1:vc)[z¯¯z[vc]]

newvV(nv­1):(nv­vc/2)

cell[nc­1,u2]Vcell[nc­2,u1]V
newv

x[newv,]Vx[cell[i,u1],]

x[newv,s]Valn$xi[i]

ncVnc­2

nvVnv­vc/2

´
iVi­1

´
xVx%*%diag(fit$surface$divisor)

retVcbind(x,coef)

dimnames(ret)Vlist(NULL,c(fit$predictors$

names\predictors,‘‘fhat’’,paste(‘‘d\’’,fit$

predictors$names\predictors,sep¯’’’)))

ret[order(ret[,1),]

´
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