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ABSTRACT

Recent work employing splined cubic polynomial exponentials as fitted plant growth curves has been extended
Lo include the second derivatives of the splines and their variances. For variates } and Z plotted against time,
T, three new quantities have been derived : (1) the RGR-rate, or theacceleration ofIn ¥in T, d[(1/¥)(d Y/dT)}/dT,
and similarly for Z; (2) the relative acceleration rate, (1/Y) (d*Y/dT=), and similarly for Z; and (3) the unit
acceleration rate, (1/Z) (d*Y/dT#). A computer program which derives these quantities, and their errors, from
splines fitted to experimental data is described and offered for circulation, and the biological relevance of the
new guantities is exemplified by means of analyses of both classical and new data.

Key words: growth curves, .pproximating functions, empirical models, second derivatives, regression analysis,
growth analysis.

INTRODUCTION

Plant growth analysis, sensu lato, involves the quantitative study of the performance of
plants or plant components, integrated both throughout the system under study and
across ecologically or agronomically-meaningful intervals of time. Ratios, rates, com-
pounded rates and integral durations are its stock-in-trade and many studies in this field
now employ fitted ‘ growth curves’ (Hunt, 1979; Causton and Venus, 1981 ; Hunt, 1982 4).

One recent methodological contribution to the analysis of lengthy and/or complicated
series of data was provided by Parsons and Hunt (1981). They exploited the highly-
advantageous properties of splined cubic polynomial exponentials (chains of third-order
polynomials fitted to logarithmically-transformed data, with adjacent polynomials
agreeing in position, slope and rate of change of slope; Wold, 1974). Examples of practical
applications of this method have been provided by Hunt (1980) and Hunt and Evans
(1980).

The present work developed from that of Parsons and Hunt (1981) and involves the
second derivative, or rate of change of slope, of the cubic splines. Though double-
differentiation of fitted growth curves is not new mathematics, it is new plant growth
analysis since hardly any of the mathematical functions hitherto used in this context have
been able to support the burden of double-differentiation without a substantial, or
complete, erosion of form. Cubic splines can, on the whole, withstand this treatment and
yet remain useful comparative tools. So they make accessible the advantages that the
study of acceleration, as opposed to that of velocity, brings to the comparative description
and interpretation of plant growth (see, for example, the preliminary work performed
in this field by Heath, 1937 and Idris and Milthorpe, 1966).

The basis of this work was a contract put out by UCPE to Dr M. G. Cox of the Division
of Numerical Analysis and Computer Science at NPL, Teddington, for the provision of
the second derivatives of fitted cubic splines and their variances. This paper describes
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318 Hunt—Second Derivatives of Plant Growth Curves

the uses to which these newly-available quantities have been put, both alone and in
combination with existing derivates, and by means of both new and classical examples
examines the biological utility of second derivatives and compounded second derivatives
as comparative tools in plant growth analysis.

THEORY
Algebraic relationships

(a) Between existing derivates. Two plant variates, ¥ and Z, are sampled sequentially
in time, T. Classically, these variates are total dry weight per plant and total leaf area
per plant. However, in view of the fact that this type of analysis is nowadays often
extended far beyond this original context, it is better to regard these variates as having
general, rather than particular, identities.

Progressionsin the two variates may be analysed either in a logarithmically-transformed
form or not, and either in the context of plants grown as spaced individuals or of plants
grown as a continuously intermingling population, as in a crop. The combination dealt
with here is that of logarithmically-transformed data arising from plants grown as spaced
individuals. Hunt (19824a) included a complementary explanation of the ‘functional’
approach to the analysis of traditional quantities in the other three contingencies, from
which an analysis along the present lines may also be extended if required.

For both variates, an appropriate approximating function is constructed statistically.
In the present work this is a splined cubic polynomial, though the following material

is general: In ¥ = W(T) (0
and InZ = z(T) (2)
The slope, or velocity of In ¥ in T is then obtained to provide the relative (or specific)
growth rate of ¥, R.. dn¥) 1 dY

Ry =y (D) =" =25 3

and a similar derivate exists in R, the RGR of Z (this notation follows the unified scheme
devised by Evans, 1972). A sub-division is then performed, in which

=l¥l sl in

YSY4r~ ¥ Z ar @)
In practice, the quantity Z/Y is obtained thus for particular values of T
; = exp [2(T)—¥(T)], (5)
and is often given the symbol F. Then, employing Eqn (4),
L.d¥ ¥(T) ©)

Z AT~ exp [2(T)—p(T)]

This quantity is often given the symbol E.
(b) Between new derivates. New work on cubic splines mentioned in the Introduction,
has now made available the second derivatives, y*(T') and z"(T). For Y we can write

d[l.ﬂ’]
d(iny) LY dT
dr: - dr

v odby
Ry =" =y (1) =

(7
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The new derivate, Ry, is the acceleration of In Vin T, or the velocity of Ry in T. It may
be called the RGR-rate for Y.
Taking the last term in Eqn (7), and employing the rule for the differentiation of a product,

o 03] 1 darl

AT dr ¥ 4T

a7
dF =ldr 1dir

=dT "7 Ty dr

I d¥F ol d2F
-yl tyam )
The first term in the last line of Eqgn (8) is, of course, minus the square of Ry ; the second
is the acceleration of ¥ in 7, expressed per unit of ¥. This latter may be called the relative
(or specific) acceleration rate for ¥, or RAR, and be given the symbol Vy. From Eqn
(8) we may thus write 1 d*y
Vy=v g7 =Ry+RL. )]
Then, by using Z in place of ¥, Eqns (7)-(9) may also be employed to derive a V.
Using arguments analogous to those implicit in Eqn (4), we may next write

Ley_z 1év

Y¥drr ¥ Zdrz
Here, the last term is the acceleration of Y in T, expressed per unit of Z. This may be
called the unit acceleration rate, or UAR, and be given the symbol W.

It would be inappropriate to derive the complementary quantity (1/Y) (d*Z/dT*) since,
in plant growth analysis, quantities ¥ and Z are conventionally chosen so that Z is (at
least partially) responsible for the production of ¥, but not vice versa.

Finally, for practical methods of evaluating V and W we may return to the original
approximating functions and, employing Eqn (9), write

Yy =y"(D)+ (TP, (11)
V.= (M +[Z (D) (12)

and, employing Eqns (3) and (10),
W YD+

r
Ry

(10)

= axp ) (T 72

In summary, then, there exist two central relationships: the classical one,
Ry = FxE; (14)
and the newly-derived one, involving second derivatives and compounded second
derivatives, ' +RE = Vy = Fx W. (15)

A synopsis of these quantities and their units is given in an Appendix.

Statistical relationships

From former work we have, for each particular 7T, the estimated variances of Ry, Ry,
F and E (Hunt and Parsons, 1981), while from new developments we now have
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comparably-estimated variances for Ry and R;. We also have the mean values Ry, R,
(R%) and (RZ), calculated across all values of 7. Employing Eqn (9) and standard
expressions for the variances of sums and of squares we can proceed, for each particular
T, to the estimated variance

var(Vy) = var(Ry) + var(R%) (16)

by way of var(R}) = 4 var(Ry). (R})*/RY (17)

and also do likewise for var(Vy).
Then, employing Egn (10) and a standard expression for the variance of a ratio we
can obtain, again for each particular T, the estimated variance

var(Vy) var{F)]
Vi il

Expressions involving covariance terms, and more complicated than approximations (16)
and (18), could alternatively be used. However, preliminary tests have proved these
frequently to be unstable, leading to negative variances. It is more expedient to use
simpler and more robust estimators, for even though the primary derivates are not
statistically independent, neither are their values linked in any definite way. Covariances
can be derived separately as a standing check on the validity of this course of action.

Hence, all of the quantities involved in Eqns (14) and (15) can be provided with values
and statistical limits from information on position, slope and rate of change of slope
ultimately supplied by functions (1) and (2).

var(W) = W2 [ (18)

COMPUTER PROGRAM

A program for executing all of the foregoing series of calculations has been developed
as an extension of one described by Parsons and Hunt (1981) and Hunt and Parsons
(1981). The input data are presented in the same way, and the same decisions on the
number and position of the ‘knots’ (junctures of adjoining cubic polynomials) are also
required of the experimenter (examples of latter have been fully discussed by Hunt and
Evans, 1980; Parsons and Hunt, 1981).

After obtaining the appropriate approximating splines, the program computes and
prints tables of observed and fitted values of ¥ and Z for every T, each with upper and
lower 95 per cent confidence limits and a residual (the observed minus fitted value). These
are followed by tables of instantaneous values of: RGRs for Y (Ry), (1/¥) (dY/dT);
RGRsfor Z(R,),(1/Z) (dZ/dT); RGR-rates for ¥ (Ry), dRy/dT; RGR-rates for Z (Ry),
dR,/dT; RARs for ¥ (Vy), (1/Y) (d*Y/dT?); and RARs for Z (V,), (1/Z) (d*Z/dT?); all
of these values are given for every T and are accompanied by 95 per cent confidence limits.
The next table is for derived quantities of the form Z/Y¥, with upper and lower 95 per
cent confidence limits and residuals. Finally, derived quantities of the form (1/Z) (dY/dT)
are computed from the identity (1/Y) (dY/dT)/(Z/Y), and UARs for ¥ in terms of Z
(W),(1/Z) (d*Y/dT?),arecomputed from theidentity(1/Y) (d*¥/dT*)/(Z/Y);again, both
bear 95 per cent limits.

Information on the methods adopted for calculating the limits of Z/Y and
(1/Z)(dY/dT) is given in a brochure by Hunt and Parsons (1981), which may be read
in conjunction with the Statistical Relationships outlined above. This brochure includes
users’ information for the spline program of Parsons and Hunt (1981), (and also for the
*stepwise’ program of Hunt and Parsons, 1974) and it has now been followed by a second
brochure giving facsimile lineprinter listings of the new program which includes second
derivatives and compounded second derivatives, and of specimen results. All of the
programs are written in 1900-aLGoL. Copies of the second brochure (Hunt, 19825), and
of its predecessor (which will be found an essential adjunct) are available on request.
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EXAMPLES

Sources of data

The potential of this analytical scheme has been assessed in two ways: firstly, by a
re-analysis of the classical set of data of Kreusler, Prehn and Hornberger (1879) (also
dealt with by Hunt and Parsons, 1977 and Parsons and Hunt, 1981, for reasons given
by the former) and secondly, by an analysis of two sets of newly obtained data.

Kreusler's data concern maize (Zea mays L.) grown under outdoor conditions at
Poppelsdorf in 1878. These form part of a series including several varieties and years,
comparable analyses of which (though excluding any treatment of second derivatives or
compounded second derivatives) have been performed by Hunt and Evans (1980). Mean
total dry weight per plant, W, and mean total leaf area per plant, L,, were measured
weekly. All times were expressed as days in the year, taking | January as day 1. Primary
data appear in Figs 1(a) and (b).

The new data were obtained from seedlings of local natural populations of wavy
hair-grass [Deschampsia flexuosa (L.) Trin.] and annual poa (or annual meadow-grass,
Poa annua L.) which were raised from seed on alkathene beads floated on solution culture
(Hewitt, 1966, pp. 431-2) in a productive, controlled environment (full nutrient solution,
40 W m™* visible radiation, 16 h daylength (08.00-24.00 h), 20 °C day, 15 °C night, 70
per cent r.h.). This environment was maintained in a double-shell plant growth room
(Rorison, 1964). Time zero was taken as the day of emergence of the coleoptile and for
35 days five or six plants were harvested daily at random from monospecific populations
of spaced seedlings for the determination of replicated values of W and of leaf dry weight
per plant, L,. These primary data appear in Figs 2(a) and (d).

Computation

Two-knot splines were fitted to both of Kreusler’s series of 14 primary data, with knots
positioned at days 192 and 223 in an exact repeat of the procedure described by Parsons
and Hunt (1981). Single-knot splines were found to be sufficient for each of the more
populous, but nevertheless simpler, sets of new data; optimal knot positions were found
at day 10 for D. flexuosa, and at day 8 for P. annua.

Results—in general

Complete series of splined fits and derived quantities appear in the following Figures,
which for Kreusler's maize facilitate comparisons of the behaviour of W and of L, and
for the two native grasses place emphasis on interspecific comparisons.

Results — for Kreusler's maize

The progressions for In W, In L,, Ry, R,, F and E [Fig. 1(a), (b), (c), (f) and (g)
respectively] have been discussed fully by Hunt and Evans (1980) and by Parsons and
Hunt (1981). They appear again here only for the sake of background and continuity.
Of the three new quantities, in R’ [the RGR-rate, Fig. 1(d)] the lack of continuity of slope
between the successive elements in the acceleration makes the knot positions immediately
evident to the eye. Initially, acceleration in both In W and In L, is positive, though it
declines to zero at day 172 in the case of Ry, and at day 182 in Ry,. Thereafter, both
quantities remain negative, but in the late renaissance of growth suggested by both Ry,
and R, at around day 222 [Fig. I(c)] R’ does rise significantly, both in ¥ and in L,.
Neither rise is sufficient to bring the pattern of growth back into positive acceleration,
but deceleration is eased significantly, and the more soin In L ,. This information is new.
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Fig. 1. Observed means and fitted progress curves for (a) total dry weight per plant, W (b) total

leaf area per plant, L, ; and progress curves for instantaneously-derived values of (c) relative growth

rate, R; (d) RGR-rate, R"; (e} relative acceleration rate, ¥; (f) leafl area ratio, F; (g) unit leaf rate,

E: and (h) unit acceleration rate, W. All fitted and derived data bear 95 per cent confidence limits.
Primary data of Kreusler ef al. (1879).

Relative acceleration rates [Fig. 1(e)] retreat from the somewhat mechanical behaviour
exhibited by R’ because, in addition to incorporating the trend in that derivate, they
depend also upon R? [see Eqn (9)]. Hence, when either R” or R is close to zero, V is
dominated by the other. When V is positive the variate under consideration is
accelerating in either direction; when negative, it is decelerating. The maxima in Vy; and
in V, each lie a few days earlier than the corresponding maxima in Ry and in Ry,
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indicating clearly that the place of these progressions where unit quantities of the primary
variates are accelerating most swiftly is not necessarily the place where their logarithms
are changing most swiftly (later); neither is it where these are accelerating most swiftly
(earlier, in fact at the very beginning).

The unit acceleration rate [W, Fig. 1(h)] has a remarkable progression. Despite wide
limits at each end (the inevitable accompaniment to such a highly-derived quantity) it
is clear that the most likely overall shape of the progression is that of a uniform decline:
the straight line joining the first and last fitted values of W passes within the bounds of
all of the intervening confidence limits and has a slope of —0-028 g m~* day~2. This might
perhaps be called the UAR-rate and given the symbol W, a single value encapsulating
all of the data displayed in Figs 1(a) and (b). These data encompass a 490-fold change
in W and a 170-fold change in L,, and exhibit such fluid and sinuous progressions as
until lately evaded satisfactory attempts at curve-fitting of any kind. Moreover, with the
omission only of short periods at either end, these span the entire life history of the plant
and incorporate great changes in form and function. All of this is subsumed into a
constant W, a single index of the progressive decay in the functional efficiency of total
leaf area as a producer of total dry weight.

Results — for the two native grasses

When comparing these results with those for maize, three important differences should
be borne in mind, apart from the obvious one of there now being a far fuller scheme of
harvesting. First, in terms of the life history of the plant, data for the native grasses begin
and end sooner. Second, the index of the functional size of the above-ground parts of
the plant is not L, but Ly, Third, the environment is constant. These differences have
been deliberately sought in order to increase the range of these worked examples.
Progressions of In W appear in Fig. 2(a). Not until the plants have displayed sufficient
green material to counter early respiratory losses does positive dry weight increase
commence. The extent of this dip in the early part of the growth curve depends jointly
upon the size of the reserves of the endosperm and upon the inherent velocity of vegetative
growth. Though Kreusler’s data as used in this paper show very little of this early
dip in W [Fig. 1(a)], Parsons and Hunt (1981) included additional data for W alone
(which in the original experimentation preceded the first records of [, made) and
demonstrated a dip in the growth curve which was sustained for over 20 days (that is,
until the weight of the initial sample was regained). Part of this large dip will have been
due to the slowness of the crop’s development in the cool, wet May experienced at
Poppelsdorfin 1878, and part due to the relatively large seed reserves of maize (Kreusler
reported a mean, gross dry weight of 328 mg per seed). D. flexuosa in the present study
had a mean dry weight of 0-43 mg per seed with a dip lasting for 6 days, and P. annua
a weight of 0-26 mg with a dip lasting for 2 days.

A striking contrast between the two species is evident in Fig. 2(b), where the two
progressions of Ry, are broadly similar in kind but greatly different in degree. With Fig,
2(c), Ry rises rapidly to a maximum in both species, though far earlier in P. annua (where
Ry, is zero at 7 days) than in D. flexuosa (where Ry, does not reach zero until 13 days).
Both species then show a more or less linear decline in Ry, (R}, continuing at, or just
below, zero for both). The maximum values of Ry, are 0-173 day! for D. flexuosa and
0-296 day~" for P. annua. To reach its maximum Ry, so quickly, In W in P. annua initially
shows great acceleration: 0-089 day~2, or eight times the fastest acceleration shown by
maize in Fig. 1(d).

The beginnings of the progressions for In L., [Fig. 2(d)] are quite different from those
shown for In W, for increase in Ly, is continuous. Maximum R, is therefore at the
beginning [Fig. 2(e)], and markedly so in the case of P. annua, which undergoes a rapid

12 BOT 3
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Fic. 2. Progress curves for (a) observed and fitted total dry weights per plant, W, for instantaneously-

derived values of (b) relative growth rate, Ry,; and (c) RGR-rate, Ry; for (d) observed and fitted

total leaf dry weights per plant, Ly ; for instantaneously-derived values of (e) relative leaf growth rate,

R, ; and for (f) RGR-rate for leaf dry weight, Ry All derived data bear 95 per cent confidence limits.
MNew primary data for the grasses Deschampsia flexvosa (Df) and Poa annua (Pa).

loss of acceleration over the first few days of growth [Fig. 2(f)]. Thereafter, R declines
gently and at 35 days, in both species, Ry and Ry, are both near to 0-1 day—'. Compared
with P. annua, the performance of D. flexuosain Figs 2(e) and (f) seems remarkably bland.

Interspecific comparisons show that progressions in ¥y and in ¥y, are similar in form
[Figs 3(a) and (b)]. The efficiency of total dry weight as an accelerator of its own
production (V) declines steadily in both species and is throughout higher in P. annua.
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Derivate V| behaves likewise. Unlike the progressions of V inthe case of maize [Fig. 1(e)],
these two show no innate maxima in the constant environment. Absolute levels of Vy
and V¥, are, within either species, comparable throughout, though this would be unlikely
to be repeated in plants without such a huge proportion of the above-ground material

being productive of further dry weight.
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FiG. 3. Progress curves for instantaneously-dernived values, with 95 per cent confidence limits, of (a)

relative acceleration rate for total dry weight, ¥ ; (b) relative acceleration rate for leaf dry weight,

¥y (c) leaf weight ratio, LWE.; (d) unit shoot rate, B {unit leaf rate on the basis of leaf dry weight);

and () unit acceleration rate, W. From new primary data for the grasses Deschampsia flexuosa (Df)
and Poa annua (Pa).

Progressions of LWR [L./W, Fig. 3(c)] show that leafiness rises rapidly at first
(particularly in P. gnnua) since R > Ry, then continues to rise, but more steadily (with
both species being broadly equal from 10 days onwards). At the end, both species have
approximately 80 per cent of their dry weight in leaf material.

Unit leaf rates on the basis of leaf dry weight, (1/L+) (dW/dT) (a derivate which has
been called unit shoot rate by Hunt and Burnett, 1973, and to which Hunt, 1978, gave

12-1




326 Hunt—Second Derivatives of Plant Growth Curves

the symbol B) appear in Fig. 3(d). In both species, B rises rapidly from great negativity
to reach a maximum at around 8 days. It then declines uniformly, but in P. annua values
are throughout approximately half as great again as in D. flexuosa, a difference significant
at P < 0-05 for much of the progression. Clear ontogenetic decline is demonstrable here,
and a clear interspecific difference.

Unit acceleration rates [Fig. 3(e)] do not show the simple downward drift seen in W
for Kreusler’s maize [Fig. 1(h)]. Rather, the progression for both species forms a reversed
J-shaped decline. This behaviour is nevertheless consistent with a linear decline in the
ability of total leaf area to accelerate the production of total dry weight when it is
remembered that L., not L,, is its basis. As grasses undergo vegetative development,
a given L, comes to represent more and more Ly, (specific leaf area, the ratio L, /Ly,
commonly falls). Done on the basis of Ly, a curve for W will underestimate the true
activity of L,, and more and more so as the series proceeds. This will have the effect
of making a linear progression appear J-shaped, which is what we see. Despite this, the
progression of P. annua remains significantly above that for D. flexuosa for most of its
length, confirming the earlier conclusions that both species are subject to a similar pattern
of ontogenetic decline in the productive ability of their leaf material, but operate at
inherently different levels of activity.

DISCUSSION

What is the significance of the three new derivates? The foregoing examples have made
it clear that R, ¥ and W have each provided information not available from the
traditional growth-analytical device of considering R = F x E. The RGR-rate, R', is a
straightforward acceleration (though applied to the logarithms of primary data). Splined
cubic polynomial exponentials are among the first functions to be employed in plant
growth analysis which can survive the double differentiation necessary for the derivation
of R’ though even so, as we have seen, their bones are laid bare in the process [Figs 1(d),
2(c), (f)]. Now, if one accepts (what has never been disproved) that the “true’ growth
curve of whole, vascular plants over their entire life history in infinitely complex, and
therefore supple and form-free, then what one would expect to see as one differentiated-out
this curve would be a series of smooth progressions (without breaks of slope) that became
increasingly featureless as the differential series ascended, but never discontinuous,
gradually decaying away to minute ripples en route to a flat zero at the infinite derivative.
The mathematical facts of life, however, dictate that the second derivative of the cubic
spline is a series of linear elements agreeing in position, that the third derivative is a series
of horizontal steps (with histogram-type discontinuities), and that the fourth derivative
is a horizontal line along zero value. So, these splines are, whatever their advantages over
previous methods, still no more than rough-and-ready functions which behave only
superficially like the supposedly underlying trend and soon dissolve in form with
successive differentiation.

In human biology, seamless second derivatives are occasionally obtained from very
high-order polynomial growth curves (see, for example, Joossens and Brems-Heyns,
1975), but these present more limited opportunities for plant growth analysis (Parsons
and Hunt, 1981; Hunt, 198254, p. 109) since their workings are not so immediately
controlled as those of the present splines. If great play were to be intended for R’ it might
be advisable to move on one step to splined quartic polynomial exponentials (which
would give quadratic splines in progressions of R’). But this would be at the cost of a
great deal of the control which the experimenter may exercise over fits to the primary
data themselves when using the cubic degree of spline. This control can, of course, be
abused; but not to have it would be a loss.

The relative acceleration rate, V, recovers its seamlessness despite involving R’. This
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asset is substantial and, combined with the fact that it may be defined in terms of the
pure variate alone, and not of the variate’s logarithms, makes it a valuable addition to
the concept of dry weight (or whatever) as procreator of itself, with all of the advantages
and disadvantages that this implies. Maxima, zeros and minima in V¥ assist in defining
‘cardinal points’ in the life of the plant in each particular environment, hence their value
as comparative tools should be substantial. For example, if maximum R in the seedling
phase is to be assessed as a predictor of tolerance of environmental stress (and hence
contribute to a scheme in which all vegetation in its established phase is controlled by
environmental stress and physical disturbance, Grime, 1974, 1977, 1979), it will be
necessary to obtain more refined estimates of this supposedly adaptive feature of the
plant’s gross physiology than Grime and Hunt (1975) found it possible to obtain in their
broad, but preliminary, studies. Several possibilities relating to values, slopes and maxima
in R, R"and V would present themselves for correlation with field distributions if similarly
comprehensive studies of the early growth rates of seedlings could be undertaken on a
larger scale.

As for the unit acceleration rate, and its slope W”, their context may be made clear
by remembering that relative growth rate was first hoped to be a comparatively stable
‘efficiency index’ for the particular plant growing in the particular environment
(Blackman, 1919). When it was shown, by Briggs, Kidd and West (19204), to be subject
to substantial ontogenetic drift, the same hopes were transferred, in large measure, to
unit leaf rate (Gregory, 1918; Briggs, Kidd and West, 192054). Though ULRs in
Kreusler's maize (taken as a whole, see Hunt and Evans, 1980) sustain these hopes to
some extent, later experimental work (reviewed by Evans, 1972, p. 345) showed that ULR,
too, was innately subject to drift. Some of this is evident at the beginnings and ends of
the progression shown in Fig. 1(g). Despite the behaviour of UAR in the two native
grasses [Fig. 3(e)], which can be explained, it is tempting to think of the slope of this
rate of acceleration of the production of dry matter per unit of leaf area as being a further
stepin the direction of obtaining for comparative use an index of plant performance which
is stable for a large part of the plant’s life history.
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APPENDIX
A synopsis of quantities derived from variates ¥, Z and T [see also Eqns (14), (15)].

MName of derived Instantaneous
quantity definition © Symbol Units
| dY '

iv h rate* —. R+ -1
Relative growth rate ¥ a7 ¥ T
Leaf area ratiot %, F Z ¥

1 d¥
i f ratef —.— rZ-1 -t
Unit leaf ratef 7 a7 E Yz'1
dR ;

: * & i i 1
RGR-rate T R; f b
Relative acceleration rate* 1 EK v T*

Y'dre =
Unit accelerat t oy W YyZ217e
dCCSIETANION rate e Ly ey
nit acce E d]_‘z

* An analogous guantity also exists for variate Z.

+ This name and symbol applies to the particular case where Y is total dry weight per plant and Z is total
leal area per plant. Analogous quantities involving different plant variates may have different names and
symbaols.




